Rätselhaftes System aus sechs Exoplaneten mit rhythmischer Bewegung stellt Theorien über die Entstehung von Planeten in Frage

 -  Eso / News
Diese künstlerische Darstellung zeigt den Blick von dem Planeten im TOI-178-System, der am weitesten vom Stern entfernt gefunden wurde. Bildnachweis: ESO/L. Calçada/spaceengine.org
Diese Karte zeigt die Lage des Planetensystems TOI-178 im Sternbild Bildhauer (Sculptor). Die Grafik umfasst die meisten Sterne, die unter guten Bedingungen mit bloßem Auge sichtbar sind. Die Lage von TOI-178 ist durch einen roten Kreis gekennzeichnet. Bildnachweis: ESO, IAU and Sky & Telescope

Mit einer Reihe von Teleskopen, darunter das Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO), haben Astronomen ein System aus sechs Exoplaneten entdeckt, von denen fünf in einem ungewöhnlichen Rhythmus um ihren Zentralstern kreisen. Die Forscher sind überzeugt, dass das System wichtige Hinweise darauf liefern könnte, wie Planeten, einschließlich derer im Sonnensystem, entstehen und sich entwickeln.

Als das Team TOI-178, einen etwa 200 Lichtjahre entfernten Stern im Sternbild Sculptor, zum ersten Mal beobachtete, dachten sie, sie hätten zwei Planeten entdeckt, die ihn auf der gleichen Bahn umkreisen. Ein genauerer Blick offenbarte jedoch etwas ganz anderes. „Durch weitere Beobachtungen erkannten wir, dass es sich nicht um zwei Planeten handelt, die den Stern in etwa gleichem Abstand umkreisen, sondern um mehrere Planeten in einer ganz speziellen Konfiguration“, sagt Adrien Leleu von der Universität Genf und der Universität Bern, Schweiz, der eine neue Studie des Systems leitete, die heute in Astronomy & Astrophysics veröffentlicht wurde.

Die neuen Forschungen haben ergeben, dass das System sechs Exoplaneten aufweist und dass alle außer demjenigen, der dem Stern am nächsten ist, in einem rhythmischen Tanz gefangen sind, während sie sich auf ihren Bahnen bewegen. Mit anderen Worten: Sie befinden sich in Resonanz. Das bedeutet, dass es Muster gibt, das sich wiederholt, während die Planeten um den Stern kreisen, wobei sich einige Planeten alle paar Umläufe aneinander ausrichten. Eine ähnliche Resonanz wird auch bei den Bahnen von drei Jupitermonden beobachtet: Io, Europa und Ganymed. Io, der dem Jupiter am nächsten gelegene der drei Monde, absolviert für jeden Orbit, den der am weitesten entfernte Ganymed macht, vier volle Umläufe um Jupiter, und für jeden Orbit, den Europa macht, zwei volle Umläufe.

Die fünf äußeren Exoplaneten des TOI-178-Systems folgen einer viel komplexeren Resonanzkette, einer der längsten, die bisher in einem Planetensystem entdeckt wurde. Während sich die drei Jupitermonde in einer 4:2:1-Resonanz befinden, folgen die fünf äußeren Planeten des TOI-178-Systems einer 18:9:6:4:3-Kette: Während der vom Stern aus gesehen zweite Planet (der erste in der Resonanzkette) 18 Umläufe vollzieht, absolviert der vom Stern aus gesehen dritte Planet (der zweite in der Kette) 9 Umläufe, und so weiter. Tatsächlich fanden die Wissenschaftler zunächst nur fünf Planeten in dem System, aber indem sie diesem Resonanzrhythmus folgten, berechneten sie, wo sich ein zusätzlicher Planet in seiner Umlaufbahn befinden würde, wenn sie das nächste Mal ein Zeitfenster zur Beobachtung des Systems hätten.

Dieser Tanz der resonierenden Planeten ist mehr als nur eine Bahnkuriosität, er liefert Hinweise auf die Vergangenheit des Systems. „Die Bahnen in diesem System sind sehr gut geordnet, was uns sagt, dass sich dieses System seit seiner Geburt recht sanft entwickelt hat“, erklärt Co-Autor Yann Alibert von der Universität Bern. Wäre das System früher in seinem Leben erheblich gestört worden, zum Beispiel durch einen riesigen Einschlag, hätte diese fragile Konfiguration der Bahnen nicht überlebt.

Unordnung im rhythmischen System

Doch auch wenn die Bahnkonfiguration sauber und geordnet ist, sind die Dichten der Planeten „viel ungeordneter“, sagt Nathan Hara von der Universität Genf, Schweiz, der ebenfalls an der Studie beteiligt war. „Es scheint, dass es einen Planeten gibt, der so dicht ist wie die Erde, direkt neben einem sehr leichten Planeten mit der Hälfte der Dichte des Neptuns, gefolgt von einem Planeten mit der Dichte des Neptuns. Das ist nicht das, was wir gewohnt sind.“ In unserem Sonnensystem zum Beispiel sind die Planeten fein säuberlich angeordnet, mit den dichteren Gesteinsplaneten näher am Zentralstern und den lockerer strukturierten Gasplaneten mit geringer Dichte weiter draußen.

„Dieser Kontrast zwischen der rhythmischen Harmonie der Orbitalbewegung und den ungeordneten Dichten stellt unser Verständnis von der Entstehung und Entwicklung von Planetensystemen sicherlich in Frage“, betont Leleu.

Kombinierte Techniken

Um die ungewöhnliche Architektur des Systems zu untersuchen, nutzte das Team Daten des CHEOPS-Satelliten der Europäischen Weltraumorganisation (ESA) zusammen mit dem bodengebundenen ESPRESSO-Instrument am VLT der ESO sowie NGTS und SPECULOOS, die sich beide am Paranal-Observatorium der ESO in Chile befinden.  Da es extrem schwierig ist, Exoplaneten direkt mit Teleskopen zu entdecken, müssen sich die Astronomen stattdessen auf andere Techniken verlassen, um sie aufzuspüren. Die wichtigsten Methoden, die dabei zum Einsatz kommen, sind die Beobachtung von Transits – die Analyse des Lichts, das vom Zentralstern ausgesandt wird, der sich verdunkelt, wenn ein Exoplanet von der Erde aus gesehen vor ihm vorbeizieht – und Radialgeschwindigkeiten – die Beobachtung des Lichtspektrums des Sterns auf kleine Anzeichen von Verschiebungen, die auftreten, wenn sich die Exoplaneten auf ihren Bahnen bewegen. Das Team verwendete beide Methoden, um das System zu beobachten: CHEOPS, NGTS und SPECULOOS für die Transite und ESPRESSO für die Radialgeschwindigkeiten.

Durch die Kombination der beiden Techniken konnten die Astronomen wichtige Informationen über das System und seine Planeten sammeln, die ihren Zentralstern viel näher und viel schneller umkreisen als die Erde die Sonne umkreist. Der schnellste (der innerste Planet) vollendet eine Umlaufbahn in nur ein paar Tagen, während der langsamste etwa zehnmal so lange braucht. Die sechs Planeten sind etwa ein- bis dreimal so groß wie die Erde, während ihre Masse das 1,5- bis 30-fache der Erdmasse beträgt. Einige der Planeten bestehen aus Gestein, sind aber größer als die Erde und werden als Super-Erden bezeichnet. Andere sind Gasplaneten, wie die äußeren Planeten in unserem Sonnensystem, allerdings sind sie viel kleiner und werden Mini-Neptune genannt.

Obwohl keiner der sechs gefundenen Exoplaneten in der bewohnbaren Zone des Sterns liegt, vermuten die Forscher, dass sie durch die Weiterverfolgung der Resonanzkette weitere Planeten finden könnten, die in oder sehr nahe an dieser Zone existieren könnten. Das Extremely Large Telescope (ELT) der ESO, das noch in diesem Jahrzehnt in Betrieb genommen werden soll, wird in der Lage sein, Gesteinsplaneten in der bewohnbaren Zone eines Sterns direkt abzubilden und sogar ihre Atmosphären zu charakterisieren. Dies bietet die Möglichkeit, Systeme wie TOI-178 noch detaillierter zu erforschen.

 

Weitere Informationen und Quelle unter: https://www.eso.org/public/germany/news/eso2102/?lang

nach oben

Anzeige